Editorial Office: Professor F. Lejeune, Lab. of Oncology and Exp. Surgery, Institut J. Bordet, 1, Rue Heger-Bordet, 1000, Brussels, Belgium. Phone: 32.2.539 23 43. Fax: 32.2.537 47 34
Assistant Editor: G. Ghanem, Secretarial Assist.: C. Henrotte

CONTENTS

Review:

Melanophore regulating effects of the melanin-concentrating hormone
Baker B1. 

Short communication: Melanoma-associated galactosides in Xiphophorus
Felding-Hebermann B. et al

Review of the literature

1. Melanins and other pigments chemistry
2. Biology of pigment cells and pigmentary disorders
3. MSH, MCH, other hormones, differentiation
4. Photobiology and photochemistry
5. Neuromelanins
6. Genetics
7. Tyrosinase and other enzymes
8. Melanoma
9. Eye

Call for contributions

Members’ list

Announcements

REVIEW

Melanophore regulating effects of the melanin-concentrating hormone

During the past decade, studies on colour change mechanisms in teleost fish have revealed the existence of a second potent melanotropin, the melanin-concentrating hormone MCH. This is an hypothalamo-neurohypophysal peptide which is stored in high concentrations in the neural lobe of fish pituitaries and is released when fish adapt to a pale-coloured environment (Baker, 1988a; Kishida & Baker, 1989). Although an homologous ir. peptide is found in hypothalamic neurones of all vertebrates so far investigated, including man, its distribution in animals other than the teleost is restricted mainly to the brain and only small amounts are found in the posterior pituitary gland. Moreover, with the exception of the holostean fish which are ancestral to the teleosts (Sherbrooke & Hadley, 1988), the melanophores of other vertebrates appear to lack receptors to MCH and do not respond to the peptide by melanin aggregation. Thus the use of this peptide as a colour-change hormone would seem to be an evolutionary peculiarity of certain bony fish. Indeed, in some fish such as the trout, the titre of MCH in the blood changes much more rapidly than does the α-MSH concentration (Baker, 1988b; Kishida & Baker, 1989) suggesting that MCH may have become the more important hormone for regulating physiological colour change in this species. The interest of MCH for pigment cell biologists lies in its mode of action on the melanophore, and its other involvements in pigmentation. It is these roles which have been studied most up till now and which are reviewed briefly below. Its interest for comparative physiologists, however, is its function in the brain and how this pre-adapted it to the a role in pigmentary regulation. Our knowledge on this point is rather slight although it may well turn out to be more important than the pigmentary effects of the hormone.

Recent studies on MCH sprang from the finding that melanin-concentrating hormone, which could not be attributed to catecholamines, occurred in both the trout hypothalamus and pituitary gland, and that its abundance in both sites
varied with the chromatic status of the fish (Rance and Baker, 1979; Baker & Rance, 1983). The molecule from Chum salmon pituitaries was then purified by Kawachi et al., (1983) who showed it to be a cyclic heptadecapeptide (Fig. 1). Subsequently, it was synthesized by several groups (Okamoto et al., 1984; Wilkes et al., 1984b; Eberle et al., 1986) and it is now available commercially from Peninsula Laboratories.

The multiple effects of MCH in colour change were first apparent when it was administrated to trout over several weeks in Alzet minipumps (Baker et al., 1986). In these experiments it initially induced pallor through melanin concentration and in the long term inhibited melanogenesis. This effect on melanin synthesis could be due to a direct action of MCH on the melanophores and/or to its ability to depress the release of α-MSH from the pituitary gland, which it does by a paracrine effect in the pituitary neurointermediate lobe (Barber et al., 1987). The initial rapid paling response reflects the ability of MCH to antagonize the melanin dispersing effect of α-MSH. This antagonism can be demonstrated most easily in vitro, by incubating fragments of skin or individual scales in medium containing different concentrations of MCH and α-MSH (Baker, 1988b). Such experiments show that fish species differ in their relative sensitivity to the two hormones. Thus, melanophores from the grass carp Ctenopharyngodon idellus are very responsive to low concentrations of MCH but its aggregating effect is readily overridden by equimolar concentrations of α-MSH. In contrast, although MCH is less potent on trout melanophores, it has the dominant effect when both hormones are presented together at high doses. It is possible that these species differences reflect the relative numbers of MCH and α-MSH receptors on the melanophores. Whatever the explanation, the observations explain why it is that some fish respond to injection of fish pituitary extracts (containing both MCH and α-MSH) by melanin concentration while others respond by melanin dispersion (Pickford & Atz, 1957).

MCH appears to act on specific receptors which, in contrast to the α-MSH receptors, can be activated in the absence of extracellular calcium (Hadley et al., 1988). It is likely that α-MSH uses cAMP as its second messenger but the second messenger system of MCH is as yet unknown. MCH is able to override both the effects of exogenous dbcAMP and the melanin dispersing effect of forskolin which increases intracellular cAMP by increasing adenyl cyclase activity (Baker, unpublished observations). Nor-adrenalin from the sympathetic nervous system is also involved in causing pallor in many fish, and MCH and nor-adrenalin act synergistically on isolated trout scales (Green & Baker, in preparation). This suggests that they cause melanin aggregation through different second messenger systems.

The active site within the MCH molecule has been studied
by several groups. When fragments of salmonid MCH were tested on skin from the amazonian eel, Synbranchus, Castrucci et al., (1987) found an approximate potency of MCH$_{1-17}$ (100%) = MCH$_{5-17}$ > MCH$_{1-14}$ (10%) > MCH$_{3-14}$ (1%). These experiments reveal the importance of the C-terminal residues for receptor binding/activation, but the fact that neither MCH$_{5-17}$ nor MCH$_{3-14}$ appear to induce complete melanin aggregation suggests that the N-terminal sequence may also be important for full intrinsic activity in this species. Other species may show a different relative sensitivity to the fragments however, indicating species differences in receptor structure (Hadley et al., 1987; Kawazoe et al., 1987). Thus, MCH$_{5-14}$ exhibits 100% potency when tested on melanophores from Tilapia mossambica (Kawazoe et al., 1987), while MCH$_{5-17}$ has only about 1% potency but full intrinsic activity when tested on pigment cells of the grass carp Ctenopharyngodon (Brown et al., 1989). These studies have all used fragments of the non-homologous salmonid MCH and further studies are needed to determine whether the hormone itself has also undergone mutation in different species.

MCH causes melanin dispersion rather than aggregation when tested at high concentrations on melanophores of amphibians and reptiles (Wilkes et al., 1984a, Baker et al., 1985; Ide et al., 1985), and it also has this effect in vitro on skin of the amazonian eel (Castrucci et al., 1987) low doses of the peptide causing melanin aggregation and high doses melanin dispersion. The dispersive effect is not observed if calcium is absent from the extracellular medium, nor is it exhibited by the fragments MCH$_{5-17}$ and MCH$_{3-14}$ (Hadley et al., 1988) which, as noted above, exhibit melanin concentrating activity. Hadley and co-workers have therefore concluded that melanin dispersion results from an interaction between the N-terminal region of MCH with the α-MSH receptors, even, though there is no apparent similarity between the primary structures of α-MSH and MCH (Fig. 1). Such an interpretation could explain why the melanin aggregating potency of MCH is enhanced in the absence of extracellular calcium (Hadley et al., 1988a; Baker, unpublished). MCH has a similar MSH-like activity on mouse B-16 melanoma cells, inducing tyrosinase activity when added to the culture medium at a concentration of 10$^{-6}$M (Baker et al., 1985a).

The non-pigmentary effects of MCH are still poorly understood. Besides depressing the release of α-MSH from the pars intermedia, MCH will also inhibit the release of ACTH from the corticotrophs so that fish kept in white tanks become less responsive to moderate stresses (Gilham & Baker, 1985). MCH delivered by Alzet minipump has the same effect on ACTH release (Baker et al., 1986) and this is partly due to a direct action on the pituitary pars distalis (Baker et al., 1985b) although effects at the hypothalamic level are also possible. Other effects of MCH in the brain remain to be explored but recent studies in rats show that it is able to partially antagonize certain behavioural effects induced
by iv injections of α-MSH (dee Graan et al., 1989). It seems likely that the pigmentary role of MCH evolved either from its inhibitory interaction with α-MSH in the brain or from its ability to depress the release of α-MSH from the pituitary gland.

References


Fig. 1

The primary structures of MCH and α-MSH


MSH Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH₂

Bridget I. Baker
School of Biological Sciences
Bath University
Bath - Avon BA2 7AY, UK
Phone : 0225-826826 ext. 5871

******************************************************************************
SHORT COMMUNICATION

Melanoma-associated gangliosides in Xiphophorus

Gangliosides from benign and malignant melanomas and from normal skin of the fish genus Xiphophorus were isolated and analyzed by thinlayer chromatography. Individual ganglioside components were characterized by mapping according to their sialic acid contents and by cleavage with neuroaminidases. In all three tissues examined, sulfatide and the gangliosides NeuAc-GalCer (GM₄), II²NeuAc-LacCer (GM₃), II³NeuAcGg₃Cer (GM₂) and II₃(NeuAc)₂-LacCer (GD₃) were found. Ganglioside GD₃ yielded a positive reaction, following immunoadsorption with mouse monoclonal antibody R24 on thin-layer plates. Two alkali-labile disialoganglioside species were specifically recognized by mouse monoclonal antibody D1.1, thus indicating the presence of O-acetyl-GD₃, since it could be converted to the R24 positive GD₃ ganglioside after alkaline saponification. The other one appears to be restricted to the malignant tumor and represents a novel melanoma-associated ganglioside derivative. It was characterized as O-acetyl-(NeuAc)₂-nLc₄Cer by exoglycosidase cleavage, by proving its neutral carbohydrate backbone as type II-chain lacto-series oligosaccharide using mouse monoclonal antibody 1B2, and by its cross-reaction with antibody R24 following alkaline treatment. Using antibody R24 and cryopreserved tissue sections of both benign and malignant amelanotic melanomas from albino fishes, it was demonstrated that one of the main melanoma-associated gangliosides, GD₃, was exposed predominantly in the malignant tumor. Thus, the chemical nature and even the immuno histochemical localization of the gangliosides in fish melanomas proved to be very similar to those of the known gangliosides in the phylogenetically distant human melanomas.

Felding-Habermann B et al
Institut für Physiol. Chemie
Marburg, FRG.

*************************************************************************
1. MELANINS, AND OTHER PIGMENTS CHEMISTRY


Abstract: PAGE was used to identify an enzyme that catalyzed the dehydration of scytalone to 1,3,8-trihydroxynaphthalene, the next sequential component of the pentaketide melanin pathway. The dehydratase, extd. from the pentaketide melanin-producing black yeast Phaeococcomyces species, was partially purified by gel filtration and preparative electrophoresis. Enzyme activity was indicated by the formation of a single orange band on polyacrylamide gels after scytalone was added as substrate. The enzyme has a mol. mass of ~60,000 and an isoelec. point of 5.2. The pH optimum for activity with scytalone under aerobic conditions was 7.5. Anaerobic reactions resulted in the accumulation of 1,3,8-trihydroxynaphthalene, and aerobic reactions produced 2-hydroxyjuglone, which is an orange-colored product of 1,3,8-trihydroxynaphthalene. Reduced nucleotides were not required for the dehydratase reaction. When the pentaketide pathway intermediate vermelone was used as a substrate it was converted to 1,8-dihydroxynaphthalene and an unknown hydroxynaphthalene. Exts. of the plant pathogenic pentaketide melanin-producing fungi Verticillium dahliae, V. albo-atrum, Alternaria solani, and Cladosporium cucumerinum were also shown to have the dehydratase activity on polyacrylamide electrophoresis gels. The dehydratase activity did not occur with exts. of yeasts that do not form pentaketide melanins or with exts. from V. dahliae and V. albo-atrum that had not yet formed melanin.

- Chioccara F, Novellino E.

Abstract: The title compds. I (R = H, CH2Ph) were prepd. from dopa benzyl ester (II) via a simple biomimetic synthesis. Thus, the oxidative cyclization of II with ceric ammonium nitrate gave dopachrome III, which underwent an in situ rearrangement in the presence of Zn(OAc) to give I (R = CH2Ph). Hydrogenolysis of the latter gave I (R = H). I (R = H) are intermediates in the biosynthesis of melanins.


Abstract: The cytochemical quantification of catechol oxidase activity in fixed B16 melanoma cells was investigated using dopa as the substrate. Inhibitors showed that peroxidases do not significantly interfere. The kinetics of melanin formation were studied initially in solution with purified catechol oxidase. Two key parameters were identified: lag-time and the rate of melanin formation. The lag-time was taken as the time required by intermediates to reach a critical concentration at which the polymerization process starts and melanin production becomes measurable (at 640 nm). In solution, the lag-time decreases as the enzyme activity increases, particularly when the activity is very low. The rate at which melanin is formed by pure enzyme in solution is independent of dopa concentration when its activity is low but increases linearly with dopa concentration when the activity is comparatively high. In fixed melanoma cells, the lag-time decreases linearly with increases of dopa concentrations up to 20 mM; at concentrations higher than this, the lag decreases more slowly. In contrast, the rate of melanin production is unaffected by changes in dopa concentration. The lag-times of different cells lines incubated at the same substrate concentration decrease as the enzyme activity of the cells increases. The rate of melanin production seems to be affected by factors other than catechol oxidase activity, such as the intracellular organization and distribution of the enzyme.


Abstract: A review without refs., considering discovery and elucidation of structure of the microbial phenol oxidases, their reactions, action mechanisms, and role in melanin formation.

Abstract: Static and dynamic light scattering were used to study the dynamics of aggregation of polymeric synthetic melanin (prepd. by autoxidn. of an aq. l-dopa soln.) in low pH aq. solns. Depending on the final pH value of the solns., there existed 2 regimes of aggregation kinetics, one corresponding to diffusion-limited aggregation (DLA) and the other corresponding to reaction-limited aggregation (RLA). The ppts. formed in these 2 regimes could be characterized by fractal structures. Fractal dimensions of df = 1.8 for the DLA clusters and df = 2.2 for the RLA clusters were found.

2. BIOLOGY OF PIGMENT CELLS AND PIGMENTARY DISORDERS

- Abe T, Ebizuka S, Hara S. Skin-lightening compositions containing hinokitiol and (homo)cysteine (esters) and/or ascorbic acid (esters). 1988.
Abstract: The title compns., which inhibit melanin formation and have good storage stability, contain hinokitiol and 4gtoreq.1 compd. chosen from homocysteine, cysteine, ascorbic acid, and their esters. A compn. comprising 80 .mu.mol/L homocysteine and 80 .mu.mol/L hinokitiol had excellent skin-lightening effect and was stable for 4gtoreq.1 mo.

Abstract: Hair, peripheral blood leukocytes, and other tissues from two related Brangus calves with phenotypic characteristics of Chediak-Higashi syndrome were examined by light and electron microscopy. Enlarged, pleomorphic, cytoplasmic granules, morphologically compatible with lysosomes, were seen in several neutrophils, many eosinophils, renal tubular epithelial cells, and Kupffer cells. Hair shafts of the calves showed irregular distribution and clumping of melanin granules. Severe infection and a possible hemorrhagic tendency were recognized. These Brangus calves represent the third breed of cattle affected with this genetic disease.

Abstract: Treatment of the strain HM of R. phaseoli (a melanin producer) at 35.degree. gave 9% Mel- colonies and treatment at 37.degree. gave 15% Mel- colonies. A high
frequency of Mel- mutants that were Nod- was obsd. Thirty percent of the Mel- colonies obtained by treatment at 35. degree., and 50% obtained at 37. degree., were also Nod-. This indicates that the loss of plasmid DNA implicated in the synthesis of melanin is related to the loss of symbiotic properties of these colonies. A change was obsd. only in 1 Mel- colony with the loss of the 230 Md or, perhaps, of both large plasmids; plasmids of 230, 195, 175 and 115 Md appeared in the remainder of the studied colonies.

- Brook I.
Abstract: Thirty-eight children who had recurrent tonsillitis and who were chronic carriers of group A beta-hemolytic streptococci (GABHS) were treated with oral clindamycin. Surface tonsillar cultures, obtained prior to therapy and two weeks after the termination of therapy, were processed for aerobic and anaerobic microorganisms. Mixed aerobic and anaerobic flora were obtained from all cultures. Prior to therapy, the average yield was 9.3 isolates (5.2 aerobes and 4.1 anaerobes) per specimen; after the completion of therapy, the average yield was 5.5 isolates (3.0 aerobes and 2.5 anaerobes). The GABHS were completely eliminated after clindamycin therapy, and the numbers of isolates of Bacteroides spp and Staphylococcus aureus were reduced. Beta-lactamase production was detected prior to therapy in 57 isolates recovered from all tonsillar surfaces. This group included all isolates of S. aureus (15) and Bacteroides fragilis (eight), 19 of 34 Bacteroides melaninogenicus isolates (56 per cent), and seven of 12 Bacteroides oralis isolates (58 per cent). Only four isolates of beta-lactamase-producing bacterial strains were recovered after the conclusion of therapy. Follow-up study of 33 children for eight to 16 months (average, 13 months) showed no recurrence of GABHS in 31.

- Cho KH, Chung JH, Lee AY, Lee YS, Kim NK, Kim CW.

Abstract: Dermatological practice in Martinique frequently encounters a bizarre skin condition presenting as a progressive and extensive hypomelanosis on the back. The course of this disorder is highly characteristic: it occurs mainly in females from 18-25 years of age, with a progressive development of round, pale, coalescent macules on the back and sometimes on the abdomen. This disease, which does not respond to therapy, spontaneously regresses.
within 3 to 4 years. Decreased epidermal melanin is the only histological feature. Ultrastructural examination of two cases found that the macular lesions were characterized by a switch from Stage IV single melanosomes (negroid) to small Type I-III aggregated melanosomes (caucasoid). It may thus be stated that the variation in skin coloration in these patients was due to a variation in melanosome size and distribution.

- Hashimoto K.

- Hasunuma K.
Skin-lightening cosmetics containing calcium hopantenate and dibasic carboxylic acid esters. 1988.
Abstract: The title compns., which remove melamin from the skin, inhibit melanin formation, and are not irritating to the skin, contain hopantenate Ca (I) and ,gstoreq.1 compd. chosen from RO2C(CH2)nCO2R1 (R = Cl-8 linear alkyl or alkenyl; R1 = H, Cl-8 linear alkyl or alkenyl). A lotion was prep. from I 0.05, monoethyl adipate 0.05, olive oil 15.0, iso-Pr myristate 5.0, poly(oxyethylene) nonylphenyl ether 0.5, glycerin 5.0, methylparaben 0.1, EtOH 7.0, and H2O to 100%.

- Higa Y.
Topical melanine-biosynthesis inhibitors containing placental extracts and kojic acid or its derivatives. 1988.
Abstract: Pharmaceuticals contg. placental exts. and kojic acid (I) or its derivs. are prepd. for treating chromatopathy. An ointment was formulated contg. polyethylene glycol monostearate 2.00, autoemulsifiable glycerol monostearate 5.0, stearic acid 5.00 behenyl alc. 1.00, liq. paraffin 10.00, glyceryl trioctanoate 10.00, p-HOC6H4CO2He 0.20, 1,3-butylene glycol 5.00, H2O 48.80, I 3.0, and human placental exts. 10.0 g. Clin. tests indicated that the ointment was effective in treating chloasma.

- Hubel SB, Park JC.
Abstract: Age pigment in the sensory and supporting cells was a prominent characteristic distinguishing old saccules from young. However, the pigment was not distributed uniformly throughout the sensory epithelium but displayed cell-specific patterns of accumulation. The highest cytoplasmic volume density was in the old supporting cells followed by type I hair cells and then type II hair cells. The most common form of pigmented inclusion seen in old type I hair cells was a cluster of granules resembling melanin. This form was never seen in type II hair cells or supporting cells where a form containing a lipid-like droplet was prevalent. The differences in the amount of age pigment and the forms accumulated probably reflects
metabolic differences between the three cell types.
- Kaplan P, de Chaderevian JP.
Abstract: Piebaldism, an autosomal dominant trait, is characterized by patchy hypopigmentation of the face, anterior chest, abdomen, and limbs, heterochromia/bicolored irises, congenital megacolon, and deafness. A 4-month-old Inuit (Eskimo) boy with these manifestations also had left pulmonic artery stenosis, ocular ptosis, and unilateral duplication of the renal collecting system. Evidence is presented for both qualitative and quantitative derangement of neural crest derivatives in this syndrome. Histologically, hypoganglionosis, hyperganglionosis, and ectopic ganglia in lamina propria (neuronal colonic dysplasia [NCD]) were documented in the rectum. The appendix, proximal to the clinical transition zone, showed similar dysplasia. In the hypopigmented skin, multiple microscopic sections were devoid of melanocytes, with no melanin in adjacent basal cells. The hyperpigmented skin contained melanin throughout the basal layer, but the melanocytes were unevenly distributed. Most tissues affected in this boy are of neural crest origin; pathogenesis could be due to faulty migration along the established pathways involving either the borders (basal laminae) or the components of the extracellular matrix (fibronectin, cytokeratin, laminin, glycosaminoglycans, and collagen). The similarities between piebaldism and the Waardenburg syndromes are discussed.

- McClements BM, McDowell IP, McCluskey DR.

- Miller LJ.
Abstract: Systemic injections of 5-hydroxytryptophan (5-HTP), the precursor to serotonin, stimulates melanin dispersion within dermal melanophores of red-spotted newts (Notophthalmus viridescens). Injections of para-Chlorophenylalanine (PCPA), an inhibitor of serotonin synthesis, inhibited melanin dispersion, and hence darkening of the skin, when newts were transferred to a dark background. The results indicate a role for serotonergic activity in the background adaptation response in this amphibian.

- Mimura M, Shimai Y.
Skin lightening cosmetics containing 5-hydroxy-2-styryl-4-pyrene esters. 1988.
Abstract: The title compds. I (R1 = C1-26 alkoxy, chain or alicyclic hydrocarbly, H; R2 = C2-26 acyl; n = 1-5), which inhibit melanin formation and are stable, not irritating to
the skin, and useful for skin lightening cosmetics, are prepd. Treatment of 2 g (5-hydroxy-4-pyron-2-yl)-methyltriphenylphosphonium chloride and 0.77 g 4-methoxybenzaldehyde with EtONa/EtOH in EtOH under N at room temp. for approx. 16 h gave 400 mg I (R1 = 4-OMe, R2 = H, n = 1), which (350 mg) was treated with 2-ethylhexanoyl chloride in pyridine at room temp. for 12 h to afford 330 mg I (R1 = 4-OMe, R2 = 2-ethylhexanoyl, n = 1) (II). A skin prep'n. was prepd. from stearic acid 10.0, stearyl alc. 4.0, Bu stearate 8.0, glycerin monostearate 2.0, II 0.5, propylene glycol 10.0, glycerin 4.0, KOH 0.4, perfume, sterilizer, and H2O to 100% by wt.

- Mimura M, Shimai Y.
Skin lightening cosmetics containing 5-hydroxy-2-styryl-4-pyrones. 1988
Abstract: Skin lightening cosmetics, which inhibit melanin formation and are stable and not irritating to the skin, contain the title compds. I (R = Cl-26 alkoxy, chain or alicyclic hydrocarbyl, H; n = 1-5) as active ingredients. Treatment of 2 g (5-hydroxy-4-pyron-2-yl)-methyltriphenylphosphonium chloride and 0.47 g benzaldehyde with EtONa/EtOH in EtOH under N at room temp. for approx. 16 h gave 180 mg I (R = H). A skin prep'n. was prepd. consisting of stearic acid 10.0, stearyl alc. 4.0, Bu stearate 8.0, glycerin monostearate 2.0, I [R = 4-OMe, 3-(2-ethylhexyloxy), n = 2] 0.5, propylene glycol 10.0, glycerin 4.0, KOH 0.4, perfume, sterilizer, and H2O to 100% by wt.

- Mishima Y, Ohyama Y.
Abstract: A review, with 16 refs., on increases of pigmentation with aging, the structure of melanocytes, the mechanism of melanin formation, the suppressive effect of melanin formation, and agents for melanin suppression and kojic acid.

- Nozue AT.
Abstract: Multiple neural crest tumors, hyperplasia, excessive cell proliferation, the cell death of neural crest cells and melanin pigmentation occurred in newborn mice injected intraperitoneally with heated deionized water. It is thought that these phenomena may not only be associated with the protein denaturation of the membrane structure in the neural crest cells, but also with temperature dependent changes of lipid-lipid and lipid-protein interactions, particularly changes of the mobility of proteins, and that may be a reflection of thermodynamic decrease in entropy that occurs during differentiation.

- Sakai T, Sakai H, Hashimoto N, Hirayasu R.

Abstract: Light and electron microscopic studies and energy dispersive X-ray analysis disclosed that the essential cause of gingival discoloration following the placement of a metallic crown, was marked deposition of melanin pigment. Deposition of melanin pigment was observed in epithelial cells, on basement membranes, and in fibroblasts, macrophages and among intercellular ground substance of the proprium layer. Brown or dark brown colored granules were observed in the deep portion of the proprium layer. Some metallic elements as silver and sulfur were detected. It was presumed that these materials were dental metals accidentally implanted in gingival tissues during the therapeutic procedure. The deposition of melanin pigment closely corresponded with mucosal tissue where these materials were present in the deep portion of the proprium layer. These findings suggested that these materials influenced the physiological metabolism of melanin and induced its pathological deposition in the proprium tissue.

- Sato T, Niino Y.


Abstract: The title derivs. I (R = C1-6 alkyl), useful for storage-stable skin lightening compns., are prep'd by treating 5,6-acetal (or -ketal) of ascorbic acid with corresponding .alpha.-haloacetic acid alkyl esters in the presence of alkali inorg. bases in non-hydroxy solvents. Skin prepns. contg. I inhibit melanin formation in the skin. 5,6-O-Isopropylidene-L-ascorbic acid (21.6 g) was treated with 8.4 g NaHCO3 in DMSO at room temp. for 0.5 h, then with 12.5 g C1CH2CO2Et for 20 h to give 7.9 g 3-O-(ethoxycarbonylmethyl)-5,6-O-isopropylidene-L-ascorbic acid, which (3.0 g) was treated with 0.1N HCl in EtOH at 60. degree. for 15 min to afford 2.5 g I (R = Et) (II). A cream was prep'd. from II 1.5, micocryst. wax 11.0, beeswax 4.0, vaseline 5.0, hydrogenated lanolin 7.0, squalane 34.0, hexadecyl adipate 10.0, glycerin monooleate 3.0, poly(oxyethylene) sorbitan nonooleate 1.0, propylene glycol 2.5, H2O 20.5, flavoring material 0.5%, and others (antioxidant and sterilizer).

- Sprott MS, Kearns AM.


Abstract: A strain of metronidazole-resistant B. melaninogenicus was isolated from a patient with vaginal trichomoniasis. Sensitivity testing showed no zone of inhibition to a 5-.mu.g metronidazole disk, and the min. inhibitory concn. of metronidazole was 32 .mu.g/mL. The organism retained its resistance following passage on metronidazole-free medium for >30 subcultures.
3. MSH, MCH, OTHER HORMONES, DIFFERENTIATION

- Bird DJ, Baker BI.  
  An immunological study of the secretory activity of neurons  
  producing melanin-concentrating hormone in a teleost.  
  Abstract: The melanin-concrg. hormone is a general  
  vertebrate neurosecretory peptide which, in bony fish,  
  serves as a neurohypophyseal hormone influencing pigmented  
  changes in response to background color. Young carp were  
  reared for 6 mo in white- or black-colored tanks to det.  
  how this would influence the development of the neurons  
  producing the peptide. Cytol. criteria and RIA of tissue  
  exts. showed that the background markedly influenced the  
  synthetic activity of these neurons. In carp reared in  
  black tanks, the perikarya were small and poorly  
  granulated, with small nuclei and often undetectable  
  nucleoli. Transfer of such fish to a white tank for 6 days  
  caused no significant change in hormone content but cytol.  
  criteria suggested an increased activity of some of the  
  neurons. In fish reared on a white background, over 50% of  
  these neurons showed a greatly enhanced synthetic activity,  
  whereas RIAs showed higher concns. of immunoreactive  
  peptide in their hypothalami but not in their pituitary  
  glands. After such fish were moved to black tanks for 6  
  days, the neuropeptide content of the hypothalamus and  
  pituitary gland was significantly increased. Histol., this  
  was reflected in the amt. of immunostainable granulation in  
  both sites, but cell nuclear size was not decreased. These  
  changes are interpreted in terms of changes of hormone  
  synthesis and release. The observations provide evidence  
  that the activity of many but not necessarily all of the  
  neurons producing melanin-concrg. hormone in the carp  
  hypothalamus is controlled by background color.

- Kameyama K, Tanaka S, Ishida Y, Hearing VJ.  
  Interferons modulate the expression of hormone receptors on  
  the surface of murine melanoma cells. J Clin Invest  
  Abstract: The effects of IFN-alpha, IFN-beta, and  
  IFN-gamma on the differentiation of murine melanoma cells  
  has been studied, in the presence and absence of  
  melanocyte-stimulating hormone (MSH); the cells were highly  
  responsive to treatment with MSH, which increased the rate  
  of melanin production 25-fold and tyrosinase activity  
  6-fold within 4 d. Treatment of melanoma cells with  
  IFN-alpha, IFN-beta, or IFN-gamma alone had no stimulatory  
  effect on melanin production, but when the cells were  
  cultured with IFN in the presence of MSH, pigment  
  production was significantly and synergistically increased  
  relative to cells cultured with MSH only. Flow cytometric  
  analysis revealed that levels of tyrosinase in the cells  
  were not affected by MSH or by IFN, which suggests that  
  stimulation of melanogenic activity occurred by activation
of a preexisting cellular enzyme. Scatchard analyses showed that the number of MSH receptors on IFN-treated cells was significantly increased (approximately 2.5-fold) relative to untreated cells (approximately 61,000/cell). These findings demonstrate that IFN stimulate differentiation (that is, pigmentation) of melanocytes by increasing the expression of surface MSH receptors; this in turn suggests that such a mechanism may in part be responsible for postinflammatory skin pigmentation, and provides an additional basis for action in the clinical responses of melanoma to IFN treatment.


Abstract: The existence of melanocyte-stimulating hormone (MSH) in fish brains was investigated by a range of techniques: radioimmunoassay, HPLC, bioassay, and immunocytochemistry. Immunoreactive alpha MSH (ir alpha MSH) was detected by radioimmunoassay in all regions of carp and trout brains, with the highest concentration in the basal hypothalamus. In trout, ir alpha MSH cell bodies were located by immunocytochemistry only periventricularly, in the medial basal hypothalamus near the third ventricle, whereas in the carp ir alpha MSH staining was seen both in periventricular cells and also in some of the magnocellular neurones in the lateral hypothalamus. When white-adapted fish were transferred to a black tank for 6 days, the melanin-concentrating hormone (MCH) content of the basal hypothalamus of both carp and trout increased 2- and 4.6-fold, respectively, but the alpha MSH content did not change in either species. Analysis by HPLC of pituitary gland, hypothalamic, and optic tectal extracts revealed that the pituitary contains desacetyl, monoacetyl, and diacetyl alpha MSH, although the ratio of these forms differed in the two species. The hypothalamus and optic tectum, however, contained predominantly the desacetyl form of alpha MSH. Bioassays for MSH in the HPLC fractions revealed the existence of presumptive beta MSH in both the pituitary and hypothalamus. An argument is advanced that the periventricular ir alpha MSH neurones are homologous with the proopiomelanocortin cells of the arcuate nucleus in mammals, and that the immunocytochemical alpha MSH-like activity in the MCH neurones may not be authentic alpha MSH.


Abstract: Light microscopic double immunocytochem. stainings, performed on sea bass hypothalamohypophyseal sections, revealed the projection of different
neuropeptide-immunoreactive neurons innervating the hormone-producing cell populations in the pituitary gland. In the rostral pars distalis (PD) ACTH cells were found in close proximity to fibers immunoreactive for somatostatin (SRIF), growth hormone-releasing hormone (GRF), ACTH-releasing hormone (CRF), vasotocin (VT), isotocin (IT), substance P (SP), neurotensin, and galanin (GAL), whereas the PRL cell zone seemed only innervated by nerve fibers immunopos. for GAL. In the proximal PD, fibers immunoreactive for SRIF, GRF, VT, IT, cholecystokinin, SP, neuropeptide Y, and GAL formed a close relationship with the growth hormone cells. The gonadotrophs were obsd. near nerve fibers immunostained for LH-RH, IT, and less obviously GRF and VT, whereas fibers pos. for GRF, CRF, VT, IT, SP, and GAL penetrated between and formed a close assocn. with the thyrotrhops. In the pars intermedia the MSH cells and the PAS-pos. (PAS+) cells seemed both innervated by sep. nerve fibers immunoreactive for GRF, CRF, melanin-concg. hormone, VT, IT, and SP. All these results suggest a functional role of the neuropeptides in the adenohypophysis of the sea bass, possibly in the synthesis and/or release of hypophyseal hormones from the different cell types.

- Naito N.
Abstract: A review, with 10 refs., on the structure, function, and distribution in brain of chum salmon melanin-concg. hormone (MCH), and its counterpart in rats.

- Ono M, Wada C, Oikawa I, Kawazoe I, Kawauchi H.
Abstract: The structures of two kinds of melanin-concentrating hormone (MCH) cDNA clones isolated from a chum salmon hypothalamus cDNA library were described. The MCH heptadecapeptide was present at the C terminus of a putative MCH precursor consisting of 132 amino acid residues. The two clones were 80% homologous with each other at the amino acid sequence level. Two genes, each directing one of the mRNAs was noted at about a single copy per haploid salmon genome. MCH genes were efficiently expressed as 0.9-kb poly(A)+RNA in salmon hypothalamus, and sequences hybridizable with salmon MCH cDNA were found in rat hypothalamus.

- Prasad KC.
Abstract: The purpose of this investigation was to identify those agents and combinations of agents that help convert murine melanoma cells to cells of differentiated (normal-like) phenotype in culture. The agents used were
4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone (R020-1724), which is an adenosine 3',5'-cyclic monophosphate (cAMP) phosphodiesterase inhibitor that has never been tested on melanoma cells in culture, and d-alpha tocopheryl succinate (vitamin E succinate), which has previously been shown to inhibit growth and induce morphological differentiation in melanoma cells. The results indicated that R020-1724 by itself inhibited growth, reduced survival, caused morphological differentiation and increased the melanin content (one of the biochemical differentiated functions) in melanoma cells. Vitamin E succinate had a similar effect on the melanoma cells, which supports past research on this vitamin. A combination of R20-1724 and vitamin E succinate had a significantly greater effect on the melanoma cells than either of the agents by themselves. The agents identified in this study may provide useful tools for studying the mechanisms of differentiation in melanoma cells.

4. PHOTOBIOLOGY AND PHOTOCHEMISTRY

- Barr L.
  Abstract: As is common for amphibians, the sphincter pupillae of the axolotl contracts in vitro in response to illumination with visible light. 1. In a comparison of photomechanical responses of albino and normally pigmented axolotls, similar time courses and maxima of force development were found. 2. The dependence of isometric active force development on the length of the sphincter pupillae is similar to that of other smooth muscles. 3. The action spectrum of the axolotl is similar to the absorption spectrum of frog rhodopsin. 4. At low stimulus strengths, the increase of normalized, isometric, active force with increasing stimulus strength is approximately seven times as great in albino axolotls as in normally pigmented ones. 5. Melanin appears to decrease the light sensitivity of the irises of normally pigmented animals by acting as a simple light shield.

- Dover JS, Margolis RJ, Polla LL, Watanabe S, Hruza GJ, Parrish JA, Anderson RR.
  Abstract: Q-switched ruby laser pulses cause selective damage to cutaneous pigmented cells. Repair of this selective damage has not been well described. Therefore, using epilated pigmented and albino guinea pig skin, we studied the acute injury and tissue repair caused by 40-ns, Q-switched ruby laser pulses. Gross observation and light
and electron microscopy were performed. No specific changes were evident in the albino guinea pigs. In pigmented animals, with radiant exposures of 0.4 J/cm² or greater, white spots confined to the 2.5-mm exposure sites developed immediately and faded over 20 minutes. Delayed depigmentation occurred at seven to ten days, followed by full repigmentation by four to eight weeks. Regrowing hairs in sites irradiated at and above 0.4 J/cm² remained white for at least four months. Histologically, vacuolation of pigment-laden cells was seen immediately in the epidermis and the follicular epithelium at exposures of 0.3 J/cm² and greater. Melanosomal disruption was seen immediately by electron microscopy at and above 0.3 J/cm². Over the next seven days, epidermal necrosis was followed by regeneration of a depigmented epidermis. By four months, melanosomes and melanin pigmentation had returned; however, hair follicles remained depigmented and devoid of melanocytes. This study demonstrates that selective melanosomal disruption caused by Q-switched ruby laser pulses leads to transient cutaneous depigmentation and persistent follicular depigmentation. Potential exists for selective treatment of pigmented epidermal and dermal lesions with this modality.


Abstract: Melanin has been previously shown to modify the mydriatic response to atropine instillation. Skin and iris pigmentation has also been shown to modify aspects of the heart rate response to injected atropine, although these observations have been generally overlooked. In this study, 20 healthy non-smoker male subjects, ages 20-30 years, were injected by two different automatic injector devices and the mydriatic and heart rate responses in the first 90 min were reported. The group included 8 brown-eyed, 4 hazel-eyed, and 8 blue-eyed subjects. Although there were differences in the rate of atropine delivery between the two injection devices, the heart rate responses were independently modified by eye color to a magnitude of difference as great as the differences between injectors. Subjects with more pigmented irides (brown-eyed) showed a more rapid rise in heart rate compared to less pigmented irides (hazel-eyed and blue-eyed subjects). Following injection by the device with a slower atropine absorption rate, these differences were particularly enhanced and an abbreviated bradycardic phase of the heart rate response was observed for the brown-eyed subjects. This observation confirms earlier reports and suggests the possibility of an interference by melanin (in the iris or elsewhere) in atropine accessibility to selected muscarinic target sites.

- Ionescu P, Begnescu R, Vasiliu V. Experimental studies regarding the influence of laser

Abstract : The effect of laser radiation (He-Ne laser; 32-63 mW/cm²) on peripheral lymph nodes was studied in rabbits. Laser irradn. induced lymph node hyperplasia as illustrated by an enhancement of blastic elements, i.e., lymphoblasts and young lymphocytic cells. Irradn. also induced hyperplasia of the capillary endothelium, edema of the superficial derma, and an increase in melanin pigmentation in the Unna layer of the dermis.

- Land EJ.

Abstract : A review, with 32 refs., describing the use of the pulsed radiation techniques of pulse radiolysis and flash photolysis as novel means of very rapidly producing the short-lived semiquinone, quinone and subsequent intermediates of melanogenesis, derived from various precursors including dopa, cysteinyldopa and dihydroxyindole, and the false precursor 4-hydroxyanisole, with the aim of providing a detailed kinetic understanding of the chem. involved.

- Porges SB, Kaidbey KH, Grove GL.

Abstract : Exposure of normal skin to visible light (400-700 nm) resulted in the induction of immediate pigment darkening (IPD), immediate erythema and a persistent (delayed) tanning reaction. The intensity of pigmentation and time course of the reaction were monitored by measuring chromaticity coordinates. Both IPD and immediate erythema faded over a 24-h period but, unlike erythema, the pigmentation did not totally disappear and the residual tanning response remained unchanged for the rest of the 10-day observation period. The threshold dose for IPD with visible light was between 40 and 80 J/cm², while the threshold dose for "persistent" pigmentation was greater than or equal to 80 J/cm².

- Smith-Kappus SD.
Effects of ultraviolet radiation on the survival and metabolic end products of Bacteroides melaninogenicus. 1987.

- Vasilevskii VK, Zherebtsov LD, Spichak AD, Feoktistov SM.

Abstract : A complex colorimetric, spectrometric and morphological research of race-dependent differences in skin colour and structure has been carried out. Certain regularities in the quantity, distribution and morphological composition of melanin-containing structures
and Hb pigment have been revealed in the Russians, Vietnamese, Angolans and Mulattoes. The study has shown that sex differences in skin color depend on hemoglobin concentration—in people of the Caucasian race; both on melanin and hemoglobin concentration—in people of the Mongolian race and only on melanin concentration—in people of the Negroid race.

5. NEUROMELANINS

- Iizuka H, Nakamura T, Kadoya S.
  Abstract: A case of spinal dumbbell shaped melanotic schwannoma was reported. A 58-year-old housewife had a 3-months history of progressive gait disturbance. She also complained of mild backache and numbness in both legs. Her family history was not remarkable. When examined on admission, October 10, 1982, mild weakness of both legs with spasticity and sensory impairment below the level of T10 dermatome without sacral sparing were evident. Her deep tendon reflexes were hyperactive on both sides and plantar responses were extensor bilaterally. Sphincteric disturbance was not significant. The function of her cranial nerves was intact. She had neither cutaneous lesions, abdominal mass nor organomegaly. Thoracic plain X-rays revealed erosion of the right side vertebral body and pedicle of the 10th thoracic vertebra. Myelography disclosed a complete block at the same level by an epidural mass. On CT-myelogram, soft tissue density mass compressing the thoracic cord was apparent in the right epidural space of the spinal canal which extended to the paravertebral region through the right intervertebral foramen. Partial destruction of the body and the right side pedicle was easily recognized. Laminectomy from T9 to T11 exposed a large extradural mass which was encapsulated, elastic soft and pigmented in nature. The tumor was dumbbell shaped and extended to the right paravertebral region through the intervertebral foramen. Costotransversectomy was performed to excise the mass entirely. Following the total removal of the tumor, internal fixation was carried out by means of Harrington instrumentation with methylmethacrylate.

- Lindquist NG, Larsson BS, Lyden-Sokolowski A.
  The herbicide paraquat has been suggested as a causative agent for Parkinson’s disease because of its structural similarity to a metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which may induce a parkinsonism-like condition. MPTP as well as
its metabolite 1-methyl-4-phenylpyridine have melanin affinity, and the parkinsonism-inducing potency of MPTP is much stronger in species with melanin in the nerve cells. Autoradiography of [3H]MPTP in experimental animals has shown accumulation in melanin-containing tissues, including pigmented neurons. In the present whole body autoradiographic study accumulation and retention was seen in neuromelanin in frogs after i.p. injection of [14C]paraquat or [14C]diquat. By means of whole body autoradiography of [14C]diquat in mice (a species with no or very limited amounts of neuromelanin) a low, relatively uniformly distributed level of radioactivity was observed in brain tissue. Accumulation of toxic chemical compounds, such as paraquat, in neuromelanin may ultimately cause lesions in the pigmented nerve cells, leading to Parkinson’s disease.


Abstract: We report an exceptional case of melanotic neuroectodermal tumor of infancy (MNTI) occurring in the soft tissue of the left thigh of a 6-month-old female infant. The tumor consisted mainly of small round cells (neuroblasts) arranged in cords and nests that were separated by broad fibrovascular areas. In addition, there were a few medium-sized tumor cells containing melanin pigment (melanocytic cells) that in electron microscopy contained melanosomes as well as tonofilaments. Both tumor cell types immunostained for neuron-specific enolase (NSE) and vimentin, and the melanocytic cells reacted additionally with the antikeratin antibody KL1. Within the tumor stroma, neurofilament- and S-100-protein-positive neural cells and vimentin- and desmin-positive myofibroblasts were seen. Although dense-core granules were demonstrated ultrastructurally in some neuroblasts, no immunostaining for chromogranin A, Leu-7, serotonin, or regulatory peptides was found. MNTI located in an extremity can be confused with malignant small round and blue cell tumors of childhood. The distinction between MNTI and these tumors is of clinical significance because MNTI, in most cases, is a benign tumor that, in contrast to the latter, can be cured by complete excision. The presence of a biphasic cell population with neuroblasts and melanocytic cells must be considered the main diagnostic feature of MNTI.

6. GENETICS

- Barton DE, Kwon BS, Francke U. Human tyrosinase gene, mapped to chromosome 11 (q14----q21), defines second region of homology with mouse
Abstract: The enzyme tyrosinase (monophenol,L-dopa:oxygen oxidoreductase; EC 1.14.18.1) catalyzes the first two steps in the conversion of tyrosine to melanin, the major pigment found in melanocytes. Some forms of oculocutaneous albinism, characterized by the absence of melanin in skin and eyes and by a deficiency of tyrosinase activity, may result from mutations in the tyrosinase structural gene. A recently isolated human tyrosinase cDNA was used to map the human tyrosinase locus (TYR) to chromosome 11, region q14----q21, by Southern blot analysis of somatic cell hybrid DNA and by in situ chromosomal hybridization. A second site of tyrosinase-related sequences was detected on the short arm of chromosome 11 near the centromere (p11.2----cen). Furthermore, we have confirmed the localization of the tyrosinase gene in the mouse at or near the c locus on chromosome 7. Comparison of the genetic maps of human chromosome 11 and mouse chromosome 7 leads to hypotheses regarding the evolution of human chromosome 11.

- Jimenez M, Maloy WL, Hearing VJ.
Abstract: Tyrosinase, the critical enzyme to melanin pigmentation in mammals, occurs as a series of isozymic forms, which have been previously regarded as different stages in processing of a single precursor form. Recently, three different cDNA clones have been identified which may encode tyrosinase, they share extensive sequence homology but are distinct; two of them have been mapped to genetic loci which regulate different aspects of melanogenesis. Since direct confirmation of the authentic tyrosinase sequence has proven impossible by conventional protein sequencing strategies, we have approached the identification of the tyrosinase gene by synthesizing peptides encoded by the putative genes and preparing antibodies to those peptides. By use of pulse-chase labeling and immunoprecipitation analyses, and by enzymatic determinations, pMT4 (which maps to the brown b locus in mice) is shown to encode a molecule with tyrosinase catalytic activity which is biochemically identical with authentic tyrosinase. However, our results raise the possibility that other gene products may contribute to melanogenesis by one or more melanogenic activities.

- Kwon BS.
Cloning, sequencing, and use of human tyrosinase cDNA. 1988
Abstract: The cDNA for human tyrosinase is cloned and sequenced. This DNA is useful for genetic anal. of human albinism, prenatal diagnosis of albinism, diagnosis of melanotic and/or amelanotic melanoma, and study of melanin prodn. Clone .lambda.mel134 of a cDNA library of human melanocytes was found to encode tyrosinase: no bands were apparent upon Southern blotting of the genomic DNA of C3H/c3Hmice (albino locus deleted) with this cDNA. Another clone, .lambda.mel17-1, hybridized to melanocyte mRNA
regardless of the presence or absence of the albino locus. It was concluded that this clone contained a melanin biosynthetic enzyme cDNA.

Abstract: Using human tyrosinase cDNA as a probe, a mouse tyrosinase cDNA clone representing approx. 75% of the tyrosinase coding region and a mouse genomic clone which includes the tyrosinase 5' coding sequences were isolated: nucleotide and deduced amino acid sequence of the mouse tyrosinase gene were detd. from these clones. The predicted amino acid sequence revealed that the mouse tyrosinase is composed of 533 amino acids with a mol. wt. of 60,536. The deduced protein contains 6 potential N-glycosylation sites, two cysteine- and two histidine-rich regions which may serve as copper-binding sites, a potential signal and transmembrane sequences. The mouse and human tyrosinase nucleotide and deduced amino acid sequences are approx.81% homologous. The level of mouse tyrosinase mRNA was elevated after stimulation of Cloudman S-91 melanoma cells with melanotropin and isobutylmethylxanthine and the level of transcript reflected that of tyrosinase activity and melanin content in the cells.

Abstract: A nontumorigenic line of murine melanocytes, Mel-ab, has been transfected with the v-Ha-ras gene under transcriptional control of the Moloney murine leukemia virus long terminal repeat. Transfectants produced rapidly growing undifferentiated melanomas in recipient mice. The inhibition of melanin production in transformed cells, observable both in vitro and in vivo, suggests that ras may affect melanocyte cytoidifferentiation. Mel-ab cells require the continual presence of 12-O-tetradecanoylphorbol-13-acetate, or other activators of protein kinase C, for in vitro growth. Transfectants expressing v-Ha-ras no longer manifested this requirement and were actually growth inhibited by the addition of protein kinase C activators. These results are consistent with the notion that ras acts via the protein kinase C pathway in conferring autonomous growth on Mel-ab cells.
7. TYROSINASE AND OTHER ENZYMES

Abstract: A widely accepted notion is that an increasing cellular cyclic AMP (cAMP) concentration is prerequisite for increasing tyrosinase activity and melanin synthesis and for regulating proliferation of pigment cells. alpha-Melanocyte stimulating hormone (alpha-MSH) increases cAMP and tyrosinase activity in Cloudman melanoma cells. Prostaglandins (PGs) E1 and E2 increase melanoma cell tyrosinase activity and inhibit proliferation. Both PGs, but not alpha-MSH, block the progression of Cloudman melanoma cells from G2 phase of the cell cycle into M or G1. Only PGE1 and not PGE2 causes an elevation of cellular cAMP concentrations. The adenylate cyclase inhibitor 2',5'-dideoxyadenosine (DDA) at 5 x 10(-4) M effectively blocks the increased cAMP synthesis by cells treated with 10 micrograms/ml PGE1. The addition of DDA, however, enhances the melanogenic response of melanoma cells to 10 micrograms/ml PGE1 or PGE2, 10(-7) M alpha-MSH, 10(-4) M isobutylmethylxanthine, 10(-4) M dibutyryl cyclic AMP. DDA also augments the effects of PGE1 or PGE2 on the melanoma cell cycle. Moreover, when DDA is added concomitantly with alpha-MSH, more cells are recruited into G2 than observed in untreated controls. Neither alpha-MSH nor DDA alone has any effect on the cell cycle. These findings undermine the role of cAMP in the melanogenic process and suggest that blocking melanoma cells in G2 may be required for the remarkable stimulation of tyrosinase activity observed with PGE1 or PGE2 alone or in combination with DDA. The observed block in G2 may be essential for the synthesis of sufficient mRNA, which is required for stimulation of tyrosinase activity.

Abstract: We have employed immunohistochemical and morphometric procedures to study the distribution of monoamine-synthesizing neurons in the medulla oblongata of the adult human, utilizing antibodies to tyrosine hydroxylase (TH), phenylethanolamine N-methyltransferase (PNMT), and phenylalanine hydroxylase (PH8). In the human brain, the antigen with which PH8 reacts occurs within neurons that presumably synthesize serotonin (Haan et al., '87). Neurons containing these antigens were mapped and counted in successive coronal sections with the aid of a computer-assisted procedure. The results indicate that monoamine-synthesizing neurons are distributed in the human brain in patterns broadly similar to those described for other species. TH-immunoreactive cells extended
caudorostrally for approximately 32 mm commencing at the 
spinomedullary junction and ending 8 mm caudal to the 
pontomedullary junction. In coronal sections these 
TH-immunoreactive neurons were seen in the lateral medulla 
dorsal to the inferior olive extending in a continuous band 
to the dorsomedial medulla. Above the obex the majority of 
these cells apparently synthesize adrenaline since many 
PNMT-immunoreactive cells were also found in this region. 
There were few or no PNMT-immunoreactive cells caudal to 
the obex, indicating that the TH-immunoreactive cells in 
this region synthesize either noradrenaline or dopamine. 
Approximately 65% of these TH-immunoreactive neurons 
contained melanin pigment, whereas few or no 
PNMT-immunoreactive cells contained melanin pigment. 
PH8-immunoreactive cells extended throughout the 
rostrocaudal extent of the medulla oblongata (approximately 
40 mm). In coronal sections the majority were found in the 
medullary raphe nuclei. However, many cells throughout the 
rostrocaudal extent of the medulla were found laterally 
termed in with catecholamine-synthesizing neurons. 
Occasional neurons in the lateral medulla appeared to 
contain both PH8- and TH-immunoreactivity.

- Jacobsn MK, Dobre VC, Branam C, Jacobsn GM. 
Oxidation of 2-hydroxyestra diol and its incorporation into 
melanin by mushroom tyrosinase. J. Steroid Biochem. 

Abstract: The presence of catechol in a reaction mixt. has 
previously been shown to promote oxidn. of 
2-hydroxyestradiol by mushroom tyrosinase. Here, it is 
shown that the oxidized products of the catecholestrogen 
are incorporated into melanin under the influence of the 
enzyme. Whether the oxidn. is restricted to tyrosinase or 
to enzymes with specific steroid-oxidizing properties was 
examld. by sepg. tyrosinase on agarose gel followed by 
hydroxylapatite chromatog. The effectiveness of the sepn. 
was monitored electrophoretically. Two bands of enzyme 
activity of 127 kilodaltons was found. One of these bands 
could be cleanly sepd. from the other. The fraction which 
contained the single band, as well as the one which 
contained both bands, had similar apparent Km values, i.e., 
1.5 .times. 10-4 and 2.1 .times. 10-4 M. They both 
catalyzed the oxidn. of 2-hydroxyestradiol, but only in the 
presence of catechol. All enzyme fractions showed the same 
pattern of activity toward the estrogen. HPLC anal. of 
reaction products of catechol indicated that not all of the 
substrate was consumed during the reaction. About 26% 
remained unreacted at an initial concn. of 100-400 .mu.M of 
catechol. This remaining catechol, rather than its 
reaction products, appeared to function as activator of the 
steroid reaction. The data were consistent with the 
presence on the enzyme of an allosteric activator site 
pecific for catechol and an active site with a much lower 
structural specificity occupied by the catecholestrogen.
8. MELANOMA

- Bertrand G.
  Abstract: The case reported concerns a 76-year-old woman under treatment for a previously diagnosed "poorly differentiated endocervical adenocarcinoma". New biopsies revealed an adenocarcinomatous tumor with unexpected melanotic pigmentation. The patient underwent cesium therapy followed by colpohysterectomy with lymphadenectomy. As there were no metastases, external complementary radiotherapy was not used. Four months after surgery, a large recurrence was detected; surgical excision proved impossible but revealed a grossly pigmented tumor from which several samples were taken. The patient died 11 months after the first consultation. No autopsy was performed. Morphological study was done on the initial biopsy, on the uterine tumor and on the recurrent tumor, using histological, cytological, ultrastructural and immunohistochemical techniques. Flow cytometry and biochemical study were also carried out on the recurrent tumor. All the samples studied histologically revealed uniform tumor morphology showing a poorly differentiated adenocarcinoma with an irregular distribution of melanin pigmentation (Fontana +). Electron microscopy confirmed the epithelial nature of the tumor, showing differentiated apical poles with villosities, linked by desmosomes. Basement membranes were irregularly present. Electron microscopy also demonstrated the melanotic nature of the pigmentation with melanosomes and premelanosomes. A few membrane-bound neurosecretory granules were seen. Immunohistochemistry showed that the tumor contains no S 100 protein and that no staining was obtained with monoclonal antibodies against malignant melanoma. Hormonal secretion and chromogranin were not detected. Tumor cells contained neither GFAP nor neurofilaments. Positive staining was obtained for neuron specific enolase and synaptophysin. Tumor cells contained three types of intermediate filament proteins = Vimentin, cytokeratins and peripherin (peripherin is an intermediate filament protein identified in 1984 by Portier, of the college of France, who very kindly supplied the antiserum and was good enough to do most of the biochemical study. Peripherin is considered to be characteristic of the peripheral nervous system. This case is the first example of demonstration of peripherin in a tumor). The biochemical study gave the following results: Cytosol assays for estrogen and progesterone receptors were negative. Vimentin, cytokeratins and peripherin were demonstrated by a study carried out in the College de France. No GFAP was found. A study of the metabolism of melanin derivatives showed high levels of urinary dopamine, serum and cytosol L. dopa.

- Grignon DJ, Ro JY, Ayala AG.

Abstract: Tumor-to-tumor metastases are uncommon despite the fact that the presence of two or more malignancies in a single patient is not a rare occurrence. The most frequent donor tumors are the lung, prostate, and thyroid gland, whereas renal cell carcinoma is by far the most common recipient. In this report we describe a patient dying of metastatic malignant melanoma and locally advanced prostate cancer in which the melanoma metastasized to the prostatic adenocarcinoma. The prostatic primary was well differentiated and stained positively with prostate-specific antigen and prostatic acid phosphatase, whereas the melanoma contained abundant melanin pigment and stained positively for S-100 protein. This is the second reported instance of prostatic carcinoma as the recipient in a case of tumor-to-tumor metastases and the first in the English language literature.

- Kable EP, Parsons PG.

Abstract: The toxicity and selectivity of 3,4-dihydroxybenzylamine (DHBA), an experimental antimelanoma agent that cannot enter the melanin pathway, broadly paralleled that of L-dopa in a panel of human melanoma cell lines sensitive or resistant to the latter drug. A human retinoblastoma cell line was found to be sensitive to both compounds. The toxicity and selectivity of both catechols were associated with inhibition of DNA synthesis; DHBA was more potent yet allowed a much greater degree of recovery compared with an equitoxic level of dopa. Dopa and DHBA had similar, dose-dependent effects on the cell cycle, arresting cells in S phase at low doses and in G1 at high doses. Replication of the DNA virus adenovirus was found to be inhibited by both agents. There was no difference between sensitive and resistant cell lines in the manganese or copper/zinc forms of superoxide dismutase, or in iron content and iron-binding capacity. Catechol toxicity was inhibited by the hydrogen peroxide scavenging agents pyruvate and methaemoglobin. Sensitivity to catechols did not correlate with melanin or tyrosinase content, rate of incorporation of tyrosine or dopa, intracellular levels of phenylalanine or tyrosine, or binding of a new monoclonal antibody directed against a melanosomal protein. These results indicate that DHBA and dopa exhibit selective toxicity for neural crest tumor cells independently of the melanisation pathway and of the superoxide scavenging system.


Abstract: A rare case is reported of melanin-producing
medullary thyroid carcinoma in a 62-year-old man. Intraoperative imprints of the thyroid tumor revealed numerous detached tumor cells containing large amounts of brown pigment. The Fontana–Masson argentaffin reaction with bleach confirmed that those granules were melanin. Histologically, the tumor was composed of two different components—a medullary area with hyalinized stroma and a follicular area. Melanin was scattered in both areas. The tumor cells in both areas were immunoreactive to carcinoembryonic antigen, calcitonin, gastrin-releasing peptide, somatostatin, met-enkephalin, neuron-specific enolase, chromogranin and neurofilaments, and negative for thyroglobulin and S-100 protein. The histologic diagnosis was melanin-producing medullary thyroid carcinoma with glandular differentiation. Although various kinds of peptides and amines have been reported to be produced in medullary thyroid carcinoma, melanin production is quite rare; this appears to be only the third reported case.

- Mafee MF, Barany M, Gotsis ED, Dobben GD, Puklin J, Chow JM, Wenig BL. Potential use of in vivo proton spectroscopy for head and neck lesions. Radiol Clin North Am 27:243-254, 1989. Abstract: Early experience with in vivo MRS has shown its potential for obtaining biochemical information, thus enhancing the diagnostic sensitivity of MRI studies. Further work on combined MRI and in vivo MRS is needed, with the goal of characterization and abnormal conditions according to their spectral patterns and for identification of tumor markers. We presented in this communication our preliminary results. It seems that the resonance from melanin can be used as a marker for melanotic tumors.

- Okihiro MS. Chromatophoromas in two species of Hawaiian butterflyfish, Chaetodon multicinctus and C. miliaris. Vet Pathol 25:422-431, 1988. Abstract: Chromatophoromas (cutaneous pigment cell tumors) were seen in two species of butterflyfish, Chaetodon multicinctus and Chaetodon miliaris, over an 11-year period (1976-1987) in waters off the islands of Maui, Lanai, and Molokini in the state of Hawaii. The chromatophore tumors found in the brown-barred butterflyfish, C. multicinctus, were predominantly iridophoromas (characterized by the presence of birefringent olive-green crystalline pigment), while the tumors in the lemon butterflyfish, C. miliaris, were primarily melanophoromas (characterized by the presence of melanin pigment). Mixed chromatophoromas, composed of iridophores, melanophores, and undifferentiated chromatophores, were found in both species. The prevalence of chromatophoromas in C. multicinctus off the island of Maui varied from a low of 22-25% in 1976 to a high of 50% in 1987. The estimated prevalence of chromatophoromas in C. miliaris was 2.5% off the island of Molokini in 1976, and 5.0% off Lanai in 1987. The cause or causes of chromatophoromas in these two species of butterflyfish has
not been determined.

- van Haard PM. Chromatography of urinary indole derivatives. J Chromatogr 429:59-94, 1988. Abstract: Latest strategies are discussed for the routine chromatographic analysis of clinically important indole derivatives in urine. Analysis of 5-hydroxyindoleacetic acid and, perhaps more importantly, serotonin and 5-hydroxytryptophan remains attractive in the screening for carcinoid tumours and their differentiation. Analyses of two precursors of the skin pigment eumelanin seem to be promising in the monitoring of treatment of malignant melanoma and screening for pigmentation disorders and gallstone formation. Studies on the clinical relevance of the determination of tetrahydro-beta-carbolines and melatonin-related indoles await routine application of chromatographic methods designed to take into consideration the relative instability of these compounds. Application of GC-MS, although confined to larger and/or governmental laboratories remains attractive as a way of improving the specificity of analyses and in establishing reference methods. As for HPLC, the recent development of chromatographic and detection methods for the concurrent determination of different clinically important and metabolically related compounds from the same sample, preferably by direct injection techniques, seems to be fruitful and should be continued.

9. EYE

PIGMENT CELL RESEARCH BULLETIN

NAME : ........................................
ADDRESS : ....................................

........................................
PHONE : ......................................

CONTRIBUTIONS

I shall send my contribution in the form of :

COMMENTARY  ○*
DISCUSSION  ○
REVIEW  ○
LETTER TO THE EDITOR  ○

TOPIC COVERED : ............................

NUMBER OF PAGES : .... (not exceeding 6 pages in double spacing, including references)

NB : when available, please send it on a diskette (MS-DOS) along with a copy of your text.

ANNOUNCEMENTS

I wish to announce the following :

MEETING  ○*
COURSE  ○
RESEARCH OPPORTUNITY  ○
OTHER  ○

* : please mark

Please send back to :

Prof. Ferdy J. LEJEUNE MD, PhD
Laboratory of Oncology and Experimental Surgery
Institut Jules Bordet
Rue Héger-Bordet 1
B - 1000 Bruxelles
ESPCR Members’ list as of June 1989

Prof G Allegri
Dept Pharmaceutical Sciences
University of Padova
Via Mazzolo 5
35100 Padova
Italy

Dr F Amilcaroli
Dept of Cell Physiology
University of L’Aquila
Via Assergi 6
I-67100 L’Aquila
Italy

Prof F Anders
Genetisches Institut
Justus Liebig Universität
Heinrich Bußs Ring 5A-62
D-6300 Giessen
FRG

Dr P Aquaron
Laboratoire de Biochimie Medicale
Faculté de Medicine
27 Boulevard Jean Moulin
13385 Marseille Cedex 5
France

Dr K Arsteng
Dept Clinical Chemistry
University Hospital
S-581 85 Linkoping
Sweden

Dr C Aubert
Laboratoire de Recherches sur les Cancers Cutanés et la Pigmentation
INSERM Unité 119
27 Bd Léa Roure
13009 Marseille
France

Dr A Augustsson
Dept Dermatology and Venereology
 Sahlgrens Hospital
Karl-Gustav v. Bergsatan 36
S-411 31 Gothenburg
Sweden

Dr R-N Bartelt
Fraunheimerweg 25
D-6 Frankfurt/Main 50
FRG

Dr M Benathan
Department of Dermatology
CHUV
CM-1011 Lausanne
Switzerland

Dr C Berthier-Vergnes
INSERM Unite 218
Centre Léon Bérard
28 rue Laennec
69373 Lyon Cedex 08
France

Dr M Bissoolo
Istituto di Scienze Farmaceutiche
Universita’ di Padova
Via Mazzolo 5
I-35100 Padova
Italy

Prof S S Bleecker
Department of Dermatology
Royal Hallamshire Hospital
Sheffield S10 2JF
UK

Dr J Borovansky
Department of Biochemistry
Charles University
U nemocnice 5
128 00 Prague 2
Czechoslovakia

Dr D Botti
Dept of Cell Physiology
University of L’Aquila
Via Assergi 6
I-67100 L’Aquila
Italy

Prof R R Bowers
Dept of Biology
California State University
151 State University Drive
Los Angeles CA 90032
USA

Professor A S Breathnach
Division of Anatomy, UNDS
St Thomas's Campus
St Thomas Hospital Medical Centre
Lambeth Palace Road
London SE1 7EH, UK

Dr M G Bridelli
Department of Physics
University of Parma
Via della Scienza 1
43100 Parma
Italy

Dr C Brujafu
Avenue Juan Carlos I, 6, 7H
30006 Murcia
Spain

Dr G Calderini
FIDIA s.p.a.
Via Ponte della Fabbrica 3/A
35031 - Abano Terme (PD)
Italy

Dr N Cassinelli
National Cancer Institute
Via Venezia 1
20133 Milan
Italy
Dr J P Casarini
Fondation A de Rothschild
INSERM
25 Rue Manin
75019 Paris
France

Dr Miles Chedekel
Advanced Polymer Systems
3696 Naven Avenue
Redwood City
California 94063
USA

Dr R Cicero
Ist. di Biologia Generale
Policlinico
Piazza Giulio Cesare
70124 Bari
Italy

Mr C L Cooksey
Department of Chemistry
University College London
Gower Street
London WC1H OAJ
UK

Dr O Crescenzi
Dept Organic & Biol Chemistry
University of Naples
Via Mezzocannone 16
I-80134 Napoli
Italy

Professor P R Cripps
Department of Physics
University of Parma
Via delle Scienze
I 43100 Parma
Italy

Dr G De Panfilis
Department of Dermatology
University of Parma
Via Gramsci 14
I-43100 Parma
Italy

Dr D De Wolff-Rouveael
Dept of Ophthalmology
Academic Hospital
Post Box 9600
2300 RC Leiden
Holland

Dr J P Doré
INSERM Unité 218
Centre Léon Bérard
28 rue Lehnec
69373 Lyon Cedex 08
France

Professor J Duchon
Department of Biochemistry
Charles University
U nemocnice 5
128 00 Prague 2
Czechoslovakia

Dr Marc Dumas
LVMH Recherche
50, rue de Seine
92700 Colombes
France

Dr A Eberle
Dept of Research (ZLF)
University Hospital
Hebelstrasse 20
CH-4031 Basel
Switzerland

Prof M Kieser
Dept of Physics
University of Houston
4800 Calhoun Road
Houston, Texas 77004
USA

Professor M A Everett
University of Oklahoma
619 NE 13
Oklahoma City
OK 73104
USA

Dr C Ferrer
Dept of Cell Biology
School of Medicine
Murcia 30100
Spain

Dr P Forlot
Laboratoire Goupil
30. avenue du President Wilson
94230 CACHAN
France

Dr A Fourtanier
L'Oreal
1 Avenue Eugene Schneider
93600 Aulnay sous Bois
France

Prof E Frank
Dept of Dermatology
University of Lausanne
CH-1011 Lausanne
Switzerland

Dr P Friedrich
Dept of Dermatology
Royal Victoria Infirmary
Newcastle upon Tyne
NE1 4LF
UK

Professor P Fritsch
Department of Dermatology
University of Innsbruck
A-6020 Innsbruck
Anichstrasse 35
Austria

Prof D Gabel
Universität Bremen
Fachbereich Chemie
Postfach 130 440
2800 Bremen
FRG

Dr E Geremia
Istituto di Biologia Generale
Via Antrone 81
Catania 95124
Italy

Dr A Gallone
Isto Biologia Generale
Policlinico
Piazza Giulio Cesare
I-70124 Bari
Italy

Dr Y Gauthier
75 Cour de Luze
3300 Bordeaux
France

Dr G E Ghanem
Laboratory of Oncology & Experimental Surgery
Jules Bordet Institute
Rue Heger-Bordet 1
B-1000 Brussels
Belgium
Dr N G Lindquist
Dept of Toxicology
University of Uppsala
Box 594
S-751 22 Uppsala
Sweden

Dr E Link
Dept Chemical Pathology
Windesayr Building
UCHSM
Cleveland St
London W1P 6DB
UK

Dr J Lofthage
Dept of Zoology
Uppsala University
Box 561
S-751 22 Uppsala
Sweden

Dr J A Lozano
Instituto de Biochimica Clinica
Conjunto Residencial
Apartado 61 Murcia
Spain

Professor R Mackie
Department of Dermatology
Glasgow University
Glasgow G12 8QQ
UK

Dr I Medda
Istituto di Biologia Generale
Facolta di Medicina
Piazza Giulio Cesare
70124 Bari
Italy

Dr A Mallardi
Istituto di Biologia Generale
Facolta di Medicina
Piazza Giulio Cesare
70100 Bari
Italy

Dr E Hansson Brahma
Radiumhemmet
Karolinska Hospital
S-10401 Stockholm
Sweden

Professor C D Marsden FR5
Dept of Neurology
Institute of Psychiatry
De Crispigny Park
London SE5
UK

Professor J M Mascaro
Dept of Dermatology
Hospital Clinico y Provincial
c/o Casanova 143
08036 Barcelona
Spain

Dr B Mateus
Department of Medical Chemistry
Faculty of General Medicine
Charles University
U nemocnice 5
128 53 Prague 2
Czechoslovakia

Dr A Meyer zum Gottesberge
Department of Otorhinology
University of Dusseldorf
Moorenstrasse 5
D-4000 Dusseldorf
FRG

Prof F L Meyskens
Director UCI Cancer Centre
Chief of Haematology/Ontology
101 The City Drive
Building 44, Route 81
Orange CA 92668
USA

Dr M Miranda
Dept of Biology & Cell Physiology
University de l'Aquila
Via Assergi 6
67100 L'Aquila
Italy

Professor Y Mishima
Dept of Dermatology
University of Kobe School of Medicine
5-1 Kusunoki-cho 7-Chome Chuo-Ku
Kobe
Japan

Professor C Miura
Dept Chemistry of Natural Products
University of Naples
Via L Rodino 22
80 134 Naples
Italy

Dr G Monfrecola
Clinica Dermatologica II
Facolta di Medicina
Universita di Napoli
Via Pansini 5
80131 Napoli
Italy

Dr A Napolitano
Dept of Organic & Biol Chemistry
University of Naples
Via Mezzocannone 16
80134 Naples
Italy

Dr H M Nazzaro-Porro
Inst. Dermatologica San Gallicano
Via San Gallicano 25/A
rome 00153
Italy

Professor R A Nicolaus
Department of Chemistry
University of Naples
Via Mezzocannone 16
80134 Naples
Italy

Dr H I Nielsen
GEA Ltd Biotech Division
Kamalholm 8-12
DK-2830 Hvidovre
Denmark

Dr P Y Noel
Lab of Reproductive Physiology
Universite de Paris VI
7 Quay St Bernard
F-75225 Paris Cedex 05
France

Dr M D-M Ochotorena
Dept of Pathology
Faculty of Medicine
University of Murcia
Espinardo Murcia
Spain

Dr K D O'Har
Dept of Biological Science
Keele University
Staffordshire ST5 5BG
UK
Dr I Onaman
Emmakede 52
1102 AR Amstelveen
The Netherlands

Dr A Palumbo
Stazione Zoologica
Villa Comunale
80121 Naples
Italy

Dr P C Parsons
Queensland Inst. of Medical Research
Herston
Queensland
Australia 4006

Dr S Passi
Ist. Dermatologico San Gallicano
Via San Gallicano 25/A
Rome 00153
Italy

Dr Stan Pevel
Department of Dermatology
University of Amsterdam
Academisch Medisch Centrum
Meibergdreef 9
1105 AZ Amsterdam - Zuidoost
The Netherlands

Dr R U Peter
Institute of Radiobiology
Neubergerstrasse 11
D-8000 Munich 45
FRG

Dr A Petterson
Dept of Clinical Chemistry
University Hospital
S-581 83 Linkoping
Sweden

Dr M Picardo
Ist. Dermatologico San Gallicano
Via San Gallicano 25/A
Rome 00153
Italy

Dr G Pintucci
Istituto di Biologia Generale
Facolta di Medicina e Chirurgia
Policlinico - Piazza Giulio Cesare
70124 Bari
Italy

Dr A Poma
Dept of Cell Biology & Physiology
University of L’Aquila
Via Asamergi 6
I-67100 L’Aquila
Italy

Professor G Prota
Dipt Chimica Organica Biologica
Università di Napoli
Via Mezzocannone 16
80134 Naples
Italy

Dr M Prunieras
L’Oreal
1 Avenue Eugene Schueller
93600 Aulnay sous Bois
France

Dr A M Ragazzi
Dipartimento di Biologia
Via Ansarini 6
University of L’Aquila
I-67100
L’Aquila
Italy

Professor A Ramsah
Department of Biochemistry
All India Institute of Medical Sciences
Anare Nagar
New Delhi - 1100029
India

Dr A Rastrelli
FIDIA s.p.a.
Via Ponte della Fabbrica 7/A
35061 - Abano Terme (PD)
Italy

Dr C Renieri
Ist Produzioni Animali
Via S. Costanzo 4
1-06100 Perugia
Italy

Prof P A Riley
Dept of Chemical Pathology
UCMSM
Windveyer Building, Cleveland St
London W1P 6DB
UK

Dr U Ringborg
General Department of Oncology
Karolinska Hospital
S-104 01 Stockholm
Sweden

Dr A Roberto
Dept of Toxicology
Uppsala University
Box 594
S-571 24 Uppsala, Sweden

Prof H Rornan
Dept of Dermatology
Lassaretet
S-222 85 Lund
Sweden

Dr I Roodahl
Hudpoliklinikken
Lundby sjukhus
Wieselgrensplanen 19
417 17 Goteborg
Sweden

Professor Y Salomon
Dept of Hormone Research
The Weizmann Institute of Science
P O Box 26
Rehovot 76100
Israel

Dr C Santoro
Istituto di Biologia Generale
Via Androne 81
95124 Catania
Italy

Prof T Sarna
Inst of Molecular Biology
Jagiellonian University
Al Mickiewicza 3
31 120 Krakow
Poland

Dr M Scalia
Istituto di Biologia Generale
Via Androne 81
95124 Catania
Italy

Professor D Schachterbabe
Inst für Physiologische Chemie
Philippus Universität Marburg
3550 Marburg
FRG
PIGMENT CELL RESEARCH - VOLUME 2, NUMBER 1

TABLE OF CONTENTS

ORIGINAL ARTICLES

1. Monoclonal antibody against a melanosomal protein in melanotic and amelanotic human melanoma cells
McEwan M, Parsons PG, Moss DJ, Burrows S, Stenzel D, Bishop CJ, Strutton GM.

8. pH-dependent interconvertible forms of mushroom tyrosinase with different kinetic properties
Devi CC, Tripathi RK, Ramaiah A.

14. Comparison of 5'-nucleotidase activities among cultured murine melanoma cell lines
Moody D, Williams LJ, Gersten DM.

17. New variants of B16 mouse melanoma: differentiation and metastatic properties
Aubert C, Voulot C, Rouge F, Pirisi V, Galindo JR.

26. Chromatophoromas in a pine snake
Jacobson ER, Ferris W, Bagnara JT, Iverson WO.

34. Phenolic melanin precursors provide a rational approach to the design of antitumor agents for melanoma
Jimbow K, Miura T, Ito S, Ishikawa K.

40. Specificity of growth inhibition of melanoma by 4-hydroxyanisole
Kulkarni GA, Nathanson L.

44. Gene transfer and expression studies in cultured avian neural crest cells differentiating into melanocytes
Vielkind JR, Vogel KS.

53. Optimization of conditions for preparing synthetic pheomelanin
Ito S.
57. Isolation and characterization of a novel yellow pigment from human and primate tissue
Horton FK, Mower HF.

BRIEF COMMUNICATION

65. Application of an α-melanocyte stimulating hormone (α-MSH) radioimmunoassay to the detection of the superpotent analog, [Nle⁴,D-Phe⁷]-α-MSH
Kreutzfeld KL, Bagnara JT.

70. Announcements

72. Instructions to contributors

******************************************************************************

PIGMENT CELL RESEARCH - VOLUME 2, NUMBER 2

TABLE OF CONTENTS

REVIEW ARTICLE

75. Analysis of mammalian pigmentation at the molecular level
Hearing VJ, Jimenez M.

ORIGINAL ARTICLES

86. Eye color pigment granules in Drosophila mauritiana: mosaics produced by excision of a transposable element
Stark WS, Sapp R, Haymer DS.

93. Occurrence of melanin granules and melanogenesis in the kidney of Sparus auratus
Zuasti A, Jara JR, Ferrer C, Solano F.

100. Melanogenesis in the pigment cells of Rona esculenta L. liver: evidence for tyrosinase-like activity in the melanosome protein fraction
Cicero R, Mallardi A, Maida I, Gallone A, Pintucci G.

109. L-tyrosine, L-DOPA, and tyrosinase as positive regulators of the subcellular apparatus of melanogenesis in Bomirski Ab amelanotic melanoma cells
Slominski A, Moellmann G, Kuklinska E.
117. Citrate activates tyrosinase from B16 murine melanoma and human skin
   Devi CC, Tripathi RK, Ramaiah A.

BRIEF COMMUNICATION

123. Effects of a ventrally localized inhibitor of melanization on cultured S91 and B16 mouse melanoma
   Kreutzfeldt KL, Fukuzawa T, Bagnara JT.

126. Program of Pan American Cell Biology Meeting

137. Abstracts of Pan American Cell Biology Meeting

155. Erratum: Quevedo, Walter C., Jr., J. Dyckman, R.
   Halaban, G.E. Moellmann, J.M. Cowan, T.J. Holstein

156. Announcements

158. Instructions to contributors

*****************************************************************************************

PIGMENT CELL RESEARCH - VOLUME 2, NUMBER 3

TABLE OF CONTENTS

ORIGINAL ARTICLES

161. Investigation of the regulation of pigmentation in α-
   melanocyte stimulating hormone responsive and unresponsive cultured B16 melanoma cells
   Hill SE, Buffey J, Thody AJ, Oliver I, Bleezen SS, Mac Neil S.

167. Differential radiosensitivity in cultured B16 melanoma cells following interrupted melanogenesis induced by
   glycosamine
   Mileo AM, Mattei E, Fanuele M, Delpino A, Ferrini U.

171. Control of melanoblast differentiation in amphibia by α-
   melanocyte stimulating hormone, a serum melanization factor, and a melanization inhibiting factor
   Fukuzawa T, Bagnara JT.

182. Drug-induced and genetic hypermelanism: effects on pigment cell differentiation
Frost SK, Borchert M, Carson MK.

191. Effect on the barring gene on eye pigmentation in the fowl
Schreck RE, Bowers RR.

202. Repigmentation of vitiliginous skin by cultured cells
Brysk MM, Newton RC, Rajaraman S, Plott T, Barlow E,
Bell T, Penn P, Smith EB.

208. Antioxidant enzymatic systems in pigment tissue of amphibia
Geremia E, Corsaro C, Baratta D, Santoro C, Scalia M,
Sichel G.

213. Ionic requirements for melanin concentrating hormone (MCH) actions on teleost Poecilia reticulata melanophores
Visconti MA, De L. Castrucci AM, Hadley ME, Hruby VJ.

LETTER TO THE EDITOR

218. Hazard in tyrosinase assays
Bennett DC.

219. Announcements

220. Instructions to contributors